Case study: a comprehensive look at compostable plastics

Understanding the circular potential for biobased, compostable plastic such as PLA helps make better choices for sustainable bioplastic alternatives and environmental protection.

Climate change and in general environmental issues have become a priority for policy makers around the globe. The plastic sector is also subject of policies that answer the urge of better material recycling and overall increase plastic’s circularity. PLA is industrially compostable, offering a different, realistic and circular end-of-life solution. 

Separate biowaste collection and reworking of biowaste is currently far from its potential. In the EU27+, current capture of food waste is just 16% of the theoretical potential, and that food waste is the most valuable source for creating compost. Absence of collection and treatment for biowaste means that they will end in landfills or incineration releasing greenhouse gases (BIC and ZWE 2020).

Organic waste in landfills generates methane, a potent greenhouse gas. Where fossil-based plastics cannot be economically recycled when contaminated with food residue, compostable bioplastics can be organically recycled alongside food waste. Hence, both methane emissions and food waste stream plastic contamination are significantly reduced. In the case of tea bags, coffee capsules, and food packaging, this represents an ideal synergy, helping more organic waste to be repurposed and less conventional plastic to end up in compost and soils.  

Download
  • File size: 0KB
  • File name: tec-pla-_casestudies_comprehensive_compostability.pdf